
Hierarchical Task Network and Operator-Based Planning:

Two Complementary Approaches to Real-World Planning

Tara A. Estlin, Steve A. Chien, and Xuemei Wang

Jet Propulsion Laboratory

California Institute of Technology

4800 Oak Grove Drive, M/S 126-347

Pasadena, CA 91109-8099

Contact Author: Tara Estlin

Email: tara.estlin@jpl.nasa.gov

Abstract

Work on generative planning systems has focused on two diverse approaches to plan

construction. Hierarchical Task Network (HTN) planners build plans by successively

re�ning high-level goals into lower-level activities. Operator-based planners employ

means-end analysis to directly formulate plans consisting of low-level activities. While

many have argued the universal dominance of a single approach, we present an alter-

native view: that in di�erent situations either may be most appropriate. To support

this view, we describe a number of advantages and disadvantages of these approaches

in light of our experiences in developing two real-world, �elded planning systems.

1 Introduction

AI planning researchers have developed numerous approaches to the task of correct and

eÆcient planning. Two main approaches to generative planning are operator-based planners

and hierarchical task network (HTN) planners. While considerable work has been done in

analyzing and formalizing each of these approaches [Chapman 1987, Erol et al. 1994], and

some work has been done in comparing these approaches from a theoretical standpoint

[Kambhampati 1995, Minton et al. 1991], comparatively little e�ort has been devoted to

comparing the two approaches in a more practical setting.

While both HTN and operator-based planners typically construct plans by searching

in a plan-space, they di�er considerably in how they express plan re�nement operators.

HTN planners generally specify plan modi�cations in terms of
exible task reduction rules.

Operator-based planners perform all reasoning at the lowest level of abstraction and provide

a strict semantics for de�ning operator de�nitions. By virtue of their representation, HTN

planners more naturally represent hierarchy and modularity. In contrast, operator-based plan

re�nements are more general in nature since they can cover many more planning situations.

In this paper, we explain how a hybrid approach, which combines these two planning

techniques, is an e�ective method for planning in real-world applications. In particular,

we investigate the critical issue of planning representation. If domain knowledge can be

naturally represented in a planning system, then: (1) it will be easier to encode an initial

knowledge base; (2) fewer encoding errors will occur, leading to a higher performance system;

and (3) maintenance of the knowledge base will be considerably easier. Thus, an important

measure for evaluating HTN and operator-based planning is how naturally each paradigm

can represent key aspects of planning knowledge.

To evaluate representation abilities, we focus on four criteria: generality, hierarchy,
exi-

bility, and eÆciency. Generality describes the range of problem-solving situations that can be

covered by a small amount of represented knowledge. Hierarchies allow common constraints,

procedures, and patterns to be described in a single place yet used many times and are

essential for eÆcient knowledge maintenance. Flexibility describes how easily a wide range

of constraints can be accurately represented. EÆciency relates to how the representation

in
uences the size of the planner's search space.

This paper describes a number of important representational issues concerning these eval-

uation criteria which we have encountered in building planning systems for two NASA ap-

plication areas: Image Processing for Science Data Analysis (the MVP system) [Chien 1994,

Chien et al. 1995] and Deep Space Network Antenna Operations (DPLAN) [Chien et al. 1997,

2

Chien et al. 1995]. The Multimission VICAR Planner (MVP) uses a combination of plan-

ning techniques to automatically generate image processing programs from user-speci�ed

processing goals. MVP allows a user to specify a list of image-processing requirements in

terms of necessary image corrections. Given this information, MVP derives the required

processing steps and constructs a set of complex executable procedures, which will achieve

the input processing goals. Our second application involves scheduling Deep Space Network

(DSN) Antennas. In this domain, the DPLAN planner is used to generate a list of antenna

operation steps that will create a communications link with an orbiting spacecraft. DPLAN

inputs a set of antenna tracking goals and other relevant information such as available equip-

ment types and required equipment settings. DPLAN's output is a track-speci�c temporal

dependency network (TDN) which is used by an execution agent to automatically conduct

the requested antenna operations.

Both of the planners described above employ a similar combination of HTN and operator-

based planning techniques. Constructing and experimenting with these systems has helped

us to closely examine many of the representation and eÆciency trade-o�s generated when

using an integrated planning framework.

2 Integrating Planning Techniques

While we presume that the reader has a working knowledge of basic operator-based planning

and HTN planning techniques, we brie
y review the most salient di�erences of the two

approaches and discuss how they can be e�ectively integrated in one planning framework.

We also discuss two other related systems which also use some combination of HTN and

operator-based planning techniques.

2.1 An Overview of HTN and Operator-based Planning

An HTN planner [Erol et al. 1994] uses task reduction rules to decompose abstract goals into

lower level activities. A set of constraints is maintained similar to those found in an operator-

3

based planner (e.g., e�ects, causal protections) and many of the same methods can be used

to resolve possible con
icts. HTN planners can encode many types of information into task

reductions. By de�ning certain reduction re�nements, the designer can direct the planner

towards particular search paths in certain contexts. The user can also directly in
uence the

planner by explicitly adding an ordering constraint or goal protection that would not strictly

be derived from goal interaction analyses. In addition, search-control knowledge can usually

be easily encoded by writing explicit action sequences to achieve goals, thereby avoiding

considerable search. HTN planners are thus considered very
exible in representing domain

information; however, this
exibility can often lead to numerous overly-speci�c reduction

rules that can be diÆcult to understand and maintain.

In contrast, an operator-based planner reasons at a single level of abstraction - the lowest

level (e.g. [Penberthy and Weld 1992, Carbonell et al. 1992]). Actions are strictly de�ned in

terms of preconditions and e�ects; plans are produced through subgoaling and goal interac-

tion analysis. In this framework, all plan constraints (protections, ordering, codesignation)

are a direct consequence of goal achievements and action precondition and e�ect analysis.

Thus, an operator-based planner generally has a strict semantics grounded in explicit state

representation, i.e. de�ning what is and is not true in a particular state (or partial state).

This rigid representation is both a strength and a weakness. It is advantageous since it more

explicitly directs the knowledge engineer in encoding a domain. Yet, it can also make certain

aspects of a problem diÆcult to represent. For example, known ordering constraints and op-

erator sequences can be diÆcult to encode if they cannot easily be represented in terms of

preconditions and e�ects. Such constraints can and are often forced by adding \dummy"

preconditions, however this solution can often create a misleading representation.

2.2 An Integrated Planning Framework

In an integrated HTN/operator framework, a planner can use multiple planning methods

and reason about di�erent types of planning goals. For example, in DPLAN, we have de�ned

two types of goals: activity-goals and state-goals. Activity-goals correspond to operational

4

Let R be a set of decomposition rules,

Q be a list of partial-plans,

P be the current plan, and

g be an unachieved goal in P,

If g is an Activity-Goal,

1. Decompose: For each decomposition rule r in R which can decompose g, apply r to produce a new

plan P', If all constraints in P' are consistent, then add P' to Q.

2. Simple Establishment: For each other activity-goal g' in P that can be uni�ed with g, simple establish

g using g' and produce a new plan P'. If all constraints in P' are consistent, then add P' to Q.

If g is a State-Goal,

1. Step Addition: For each activity-goal, g' that asserts g as an e�ect, add g' to P to produce a new plan

P'. If the constraints in P' are consistent, then add P' to Q.

2. Simple Establishment: For each activity-goal g' in U that has an e�ect e that can be uni�ed with g,

simple establish g using e and produce a new plan P'. If all constraints in P' are consistent, then add

P' to Q.

Figure 1: Goal Re�nement Strategies

or non-operational domain activities and are manipulated using HTN planning techniques.

Operational activity-goals are considered primitive tasks that can be directly executed. Non-

operational activity-goals must be further decomposed into operational ones through reduc-

tion rules. State-goals are de�ned as the preconditions and e�ects of activity-goals, and are

achieved through standard operator-based planning methods. In our framework, a top-level

goal speci�cation consists of a set of abstract non-operational activity-goals and a set of

unachieved state-goals. Figure 1 shows the procedures used for re�ning these two types of

goals. As soon as a re�nement strategy is applied to an activity-goal or state-goal, it is

removed from a plan's list of unachieved goals. Planning is complete when all activity-goals

are operational and all state-goals have been achieved. A planning solution consists of an

ordered list of operational activity-goals.

5

2.3 Related Work

Much practical work in AI planning systems has been done in the context of decompositional

planners. Two very related systems to MVP and DPLAN are SIPE [Wilkins 1988] and O-

Plan [Tate et al. 1994]1. Both of these systems support domain-independent planning of

hierarchical and partial-order plans. The SIPE planning system was originally developed to

produce hierarchical plans that could contain parallel actions. O-Plan builds upon the idea

of task networks which are used to expand abstract plans into more detailed sets of plan

steps and constraints.

While SIPE and O-Plan allow for integration of both HTN and operator-based planning,

neither SIPE nor O-Plan make a direct distinction between HTN and operator-based plan-

ning techniques. Instead, plan formulation is primarily done using decomposition operators

(or networks). Operator-based features such as preconditions and e�ects are added to these

structures when necessary. In contrast, we argue for an approach in which HTN planning and

operator-based techniques can be used in conjunction or as separate planning methods. Do-

main information pertaining to these two techniques is also kept separate; decompositional

information is speci�ed in decomposition rules, while items such as activity precondition and

e�ects are kept in a separate schema list. This distinction is intended to allow a planner

to apply a wider variety of planning techniques and to formulate domain information more

rigorously in a
exible and usable representation.

3 Representing Hierarchical and Modularity

Information

Many of the obstacles in applying planning techniques to real-world problems can be char-

acterized as representation diÆculties. Correctly representing complex actions and other

detailed domain information can be a challenging problem in many domains. One advantage

1It is worth noting that these systems comprise 4 of the 5 applications described in [IEEE Expert 1996].

6

to employing HTN planning techniques is the ability to use abstract representation levels

of domain objects and goals. Domain objects are usually items that can be manipulated

through domain rules, such as blocks in the blocksworld. Goals can be either decomposition

goals, user-speci�ed goals, or activity preconditions that need to be achieved. Allowing ab-

stract representations of these items enables us to represent domains in an object-oriented

form, which is easier to write and reason about. This format also contributes to a more

general domain knowledge base that can be eÆciently updated and maintained.2

Unfortunately, this type of generalized format makes it diÆcult to represent specialized

constraint information. Though we would like our domain information to be as modular as

possible, there often exists a few pieces of detailed information that make this diÆcult. By

incorporating operator-based planning techniques, we have been able to retain a modular

domain format, while still correctly representing more specialized constraints.

3.1 Object and Goal Hierarchies

When using an HTN planner, di�erent abstract levels of domain objects and goals can be

represented by constructing an object or goal hierarchy. More detailed information such as

object instances is at one end of a hierarchy, while very general information such as broad

object types is at the other end.

In the DSN domain, di�erent types of equipment are often required for separate antenna

activities. For example, several types of antennas are represented in our domain, which have

di�erent attributes, such as size and type. Additionally, even two antennas of the same

type are not identical. For instance, two 34 Meter Beam Wave Guide (BWG) antennas

that are located at di�erent stations may need to be treated di�erently. Our domain also

includes several di�erent types of receivers such as the Block-IV and Block-V receivers.

These receivers are used to receive data transmissions from orbiting spacecraft. In Figure 2

we show partial equipment hierarchies for antennas and receivers.

2For a discussion of these issues in the context of representing reactive planning knowledge see

[Firby 1996].

7

Antennas

26M 34M 70MBWG

34M BWG

HEF

SizeType

DSS13

Receivers

DSS15-309 DSS21... ...

Block IV RcvrBlock V Rcvr

...

Figure 2: Antenna and Receiver Hierarchies

The main advantage to this type of representation is that decomposition rules can refer

to either low- or high-level forms of a particular object or goal. In the Deep Space Network

domain, a common antenna operation is performing a telemetry (or downlink) pass where

information is transmitted from a spacecraft to an antenna. A telemetry pass usually requires

one of several types of receivers depending on the particular antenna being used. The main

steps of a telemetry pass may be very similar for di�erent size antennas even though di�erent

receiver types are required. By using object and goal hierarchies we can write just one

telemetry decomposition rule to represent the general steps taken during this operation. For

instance, a decomposition rule for a telemetry track is shown in Figure 3. In this rule a

general perform-receiver-con�guration goal is asserted as a new goal.

Information pertaining to speci�c equipment is contained in smaller, more specialized

rules. For instance, speci�c receiver con�guration steps can be added separately by decom-

posing the perform-receiver-con�guration goal into more specialized goals or low-level plan

steps. The rules listed in Figure 4 show two possible ways to break down this goal. The

�rst rule states that if the current goal is to con�gure the receiver, and the receiver assigned

to this antenna track is a Block-IV receiver, then the con�guration method for Block-IV

receivers should be used. The second rule states a similar method for Block-V receivers. By

using a general perform-receiver-con�guration goal in the telemetry track decomposition rule,

we avoid writing multiple versions of this general rule. Instead, speci�c receiver information

is propagated to smaller, more specialized rules.

8

(decomprule default-telemetry-track
 lhs
 (initialgoals ((track-goal spacecraft-track telemetry ?track-id)))
 rhs
 (newgoals ((g1 (perform-antenna-controller-configuration ?track-id))
 (g2 (perform-exciter-and-transmitter-configuration ?track-id))

 (g3 (perform-microwave-controller-configuration ?track-id))
 (g4 (perform-receiver-configuration ?track-id))
 (g5 (perform-telemetry-configuration ?track-id))
 (g6 (move-antenna-to-point ?track-id))
 (g7 (perform-receiver-calibration ?track-id)))

 constraints ((before g1 g6)
 (before g7 g3)
 (before g4 g7))))

Figure 3: Telemetry Decomposition Rule

(decomprule default-configure-receiver1
 lhs
 (initialgoals ((perform-receiver-configuration ?track-id))

 conditions ((CCN-equipment-assignment ?track-id ?equip)
 (isa ?equip BLOCK-IV-RECEIVER)))

 rhs
 (newgoals ((configure-block-iv-receiver ?track-id ?equip))))

(decomprule default-configure-receiver2
 lhs
 (initialgoals ((perform-receiver-configuration ?track-id))

 conditions ((CCN-equipment-assignment ?track-id ?equip)
 (isa ?equip BLOCK-V-RECEIVER)))

 rhs
 (newgoals ((configure-block-v-receiver ?track-id ?equip))))

Figure 4: Two Decomposition Rules for Receiver Con�guration

9

There are many bene�ts to this type of representation. By allowing object and goal

hierarchies, we can construct domains in an object-oriented approach. This format allows

domain information to be stored in a more compact and usable representation. If our repre-

sentation did not allow these hierarchies, we would be forced to incorporate a large amount

of specialized information into many of our decomposition rules. This would also cause

many large and redundant rules to be de�ned. For instance, in the DSN domain there

are four di�erent receiver types: Block-III, Block-IV, Block-V, and MFR. In order to cor-

rectly represent specialized receiver information about each of these types, we would need

to write four di�erent telemetry rules. Di�erent equipment combinations could also cause

more rules to be added. For the 34 Meter antennas alone, there are three di�erent antenna

types. It's probable that some antenna/receiver combinations could act di�erently and thus

require special steps to be added to any telemetry operation which used that particular

pair of equipment. Therefore, we could possibly need 12 di�erent telemetry rules, each for

a di�erent antenna/receiver combination. Additionally, there could be other speci�c goal

interactions that could add even more steps to a rule in certain contexts. These interactions

could even further increase the number of required telemetry rules. Rules for other types

of tracking goals may also be a�ected similarly. By incorporating object and goal hierar-

chies we can remove this specialized equipment information from high-level rules, such as

the telemetry rule shown in Figure 3, and allow them to just have one general de�nition.

Specialized information is instead kept in smaller, more low-level rules and only accessed as

necessary.

Domain information is also more easily understood and updated in this format since

domain details are kept separate from more general knowledge. For example, to understand

the general steps of a telemetry operation, a user only has to view the main telemetry

track decomposition rule. If more low-level knowledge is desired, such as how to operate a

particular piece of equipment, the user could then search for rules that directly pertain to

that equipment type. Knowledge maintenance is also more eÆcient in this format. Most

domain updates involve changes to only low-level steps. For instance, a new type of receiver

10

could be added in the DSN domain, and therefore a new receiver con�guration method

might also be included. In our representation, this type of domain change need not a�ect

more general domain information, such as the main telemetry rule. In other words, this

update would not cause any rules that refer to the general perform-receiver-con�guration to

be modi�ed; only a few more specialized rules would need to be created or updated.

Unlike operator-based planners, HTN planning algorithms provide direct support for this

type of abstract representation. HTN planners are designed to operate at di�erent abstract

levels, where low-level details are kept separate from more general information. Operator-

based planners perform all reasoning at the lowest level, and do not distinguish between

di�erent abstract levels of domain knowledge. Though some operator-based planners do

allow object type hierarchies, they are not used for high-level decision making.3 Thus, a

major bene�t of utilizing HTN planning techniques, is the ability to explicitly represent

abstract domain information. We feel this type of representation
exibility contributes to

the understandability of our domain and provides for more eÆcient maintenance operations.

3.2 Modularity vs. Specialized Constraints

Though it is advantageous to keep domain information in a general and modular format, this

type of representation often makes it diÆcult to represent more specialized inter-modular

constraints. These types of constraints refer to information inside of several di�erent decom-

position rules and are usually only applicable in certain situations. Adding these constraints

forces the addition of more specialized rules and often causes a hierarchical representation

of rules to be infeasible.

For example, in the DSN domain, a common activity is to perform receiver calibration.

Similar to our receiver-con�guration example in the previous section, we would like to de�ne a

general calibrate-receiver goal which is referred to by upper-level rules, and then use several

corresponding lower-level calibration goals for the di�erent receiver types, e.g. calibrate-

3Instead, their use is intended for making variable binding decisions, such as what object instances can

be bound to a particular variable.

11

block-iv-receiver, calibrate-block-v-receiver, etc. In most antenna tracks, it is possible to refer

to the more abstract calibrate-receiver goal in the higher-level rules, however, when using

the Block-IV receiver, VLBI (Very Long Baseline Interferometry) telemetry tracks directly

impose high-level ordering constraints on speci�c Block-IV calibration steps, instead of on

the more general calibrate-receiver goal.

Two di�erent VLBI tracks are displayed in Figure 5. The left track uses a Block-V

receiver while the right one employs a Block-IV receiver. Low-level receiver calibration steps

are shown in the shaded areas. In the Block-V receiver case, con�guration is mapped onto

a single operator; in the Block IV receiver case it corresponds to �ve low-levels steps. In the

Block-V receiver track ordering constraints can be imposed over a general calibrate-receiver

activity. However, the Block-IV receiver track contains ordering constraints that refer to

lower-level calibration steps. These constraints could be modi�ed to only refer to a more

general goal type (consisting of the entire shaded area), but then specialized information

would be lost. For instance, in the Block-IV track, it may be desirable to perform MDA

con�guration (con�g-MDA step) and exciter con�guration (con�g-exctr step) in parallel.

However, if all ordering constraints are forced to refer to a general calibration goal (and

thus moved outside of the shaded area) such parallel execution would violate an ordering

constraint.

There are several possible representation solutions for this problem. One solution, which

stays entirely within the HTN framework, is to encode separate rules for tracks that require

these inter-modular constraints. This would require a main VLBI receiver-calibration rule

for each receiver type and constraints common to multiple receiver types would be duplicated

in every rule. Unfortunately, this solution results in less rule generality and if these situ-

ations are common, the domain de�nition becomes increasingly complex. For the example

mentioned above, we would have to write several sets of rules for the VLBI track, one set

that pertained only to Block-IV receivers, and at least one set (possibly several sets) for all

other receiver types.

Another possibility is to represent the domain knowledge in a purely operator-based for-

12

Action

Action

link

effect

precondition

AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA

AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA

config UWV
config BVR
for cal

cal
BVR

config UWV
for track

configBVR
for track

cal strip
chart

UWV
switch
conf cal

BVR config
for cal

rcvr
cal

rcvr
calBVR

cal

cal
receiver

AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA

AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA

config UWV
config BIVR
for pred

cal
BIVR

config UWV
for track

configBIVR
for track

call strip
chart

UWV
switch
conf cal

BIVR config
for pred

rcvr
cal

rcvr
calBIVR

cal

cal
BIVR

test trans
on

test trans
off

config
exctr

MDA
config

config
MDA

attenuator set...

cal
receiver

Figure 5: VLBI Receiver Subplans

mat. After all, these problematic ordering constraints are usually due to precondition/e�ect

links between low-level steps. Thus, instead of encoding the domain knowledge using de-

composition rules, it would be represented in a STRIPS-like operator format, where each

operator contained a set of preconditions and e�ects. This option often provides a more com-

pact representation of required constraint information; however, it has the disadvantages of

(1) losing the representation hierarchy and (2) requiring more search.

A more satisfactory solution is to incorporate operator-based planning techniques with

the hierarchical representation. This solution allows us to keep our representation hierarchy,

however enables us to easily represent specialized constraints through precondition and ef-

fects. Instead of directly adding these constraints to decomposition rules, we can implicitly

represent them by adding the appropriate preconditions and e�ects to low-level track steps.

As explained in Section 2.2, it is possible in an integrated framework to specify precondi-

13

tions and e�ects for low-level goals. The planner can then impose the appropriate ordering

constraints through precondition achievement. This approach permits inter-modular order-

ing constraints to be separate from decomposition rules thereby allowing rules to retain

their modularity. Thus, relevant links, such as the one between the con�g-MDA step and

the low-level calibrate-Block-IV-receiver step, would be represented through preconditions

and e�ects. The relevant ordering constraints would eventually be added through operator-

based precondition achievement. The only drawback to this formulation is that acquiring

constraints through goal achievement instead of specifying them directly in decomposition

rules increases planning search. However, we feel this is an adequate tradeo� since it allows

us to represent our domain information in a more useful and
exible format.

Point 1: Hierarchy and Modularity HTN approaches have the advantage of eas-

ily supporting hierarchical representation of constraints. Constraints can be expressed at

an appropriate level of the derivation hierarchy and then inherited. However, specialized

constraint information is often diÆcult to represent in an HTN format. Operator-based ap-

proaches have the advantage of generality, since they can cover many planning situations

unconsidered by the knowledge engineer. However, an operator-based approach is usually

less eÆcient (i.e. involves more search) and its representation is more diÆcult to main-

tain. A hybrid HTN/operator-based approach allows an encoding that supports hierarchy

and enhanced generality, without requiring an overly large search space.

4 Encoding Implicit Constraints

Another advantage to using a hybrid planning system is the ability to encode implicit con-

straint information. These are constraints that may not be obvious when de�ning decom-

position rules or operators, but are still necessary for correct planning. In an integrated

planning system, there are several di�erent approaches to adding constraints. They can be

explicitly enforced in decomposition rules, or they can be an emergent property of precondi-

tion achievement. Stating ordering constraints in a decomposition rule has the advantage of

14

the constraint being immediately recognized. Constraints added through goal achievement

may incur more search since they are not readily apparent; however, using preconditions and

e�ects to represent such constraints can often o�er a more compact representation.

Consider the following example. When performing a telemetry pass in the DSN domain,

a required step is to position the antenna to point at the speci�ed set of coordinates. This

step is represented by the activity move-antenna-to-point. However, for many precalibration

steps, which prepare the antenna for a transmission, the antenna transmitter is temporarily

turned on. For these steps, it is necessary to have the antenna in a stow position where

stray transmissions are directed at a harmless location. The antenna is usually not moved

to point at the �nal coordinates until after most precalibration steps have been executed.

Unfortunately, when de�ning the DSN domain, this constraint is often (accidentally) left out

of many pre-calibration decomposition rules since it does not directly a�ect the success of

pre-calibration activities.

One way to enforce this constraint through HTN techniques is to explicitly add ordering

constraints to all telemetry decomposition rules that specify the activity move-antenna-to-

point be ordered after any activity that turns on the transmitter. This would ensure the

constraint is enforced early, thus avoiding extra search. Unfortunately, such a constraint

may have to be speci�ed numerous times if there are multiple decomposition rules in which

it applies. And if one such constraint is erroneously omitted, it could cause an invalid plan

to be produced.

Another possibility is to employ operator-based precondition/e�ect analysis. We could

add a precondition of antenna-at-stow to any precalibration activities that could cause an-

tenna transmission. This prevents the move-antenna-to-point step from being ordered before

any pre-calibration activities that use the transmitter. Unfortunately, this option requires

a number of extra preconditions to be added and could possibly induce more search. This

could also create a plan with unnecessary activities where the antenna is moved out of stow

position too early and then is moved back to stow position before any pre-cal activities that

use the transmitter.

15

The best solution is to use both HTN and operator-based techniques together. In this

case we use HTN methods to add an overall track goal of forbidding stray transmissions as a

protection during the entire pre-cal process. We then force relevant transmission actions to

have a conditional e�ect which violates this requirement when the preconditionnot(antenna-

at-stow) is satis�ed.

Point 2: Implicit Constraints An HTN approach o�ers great
exibility in specifying

arbitrary constraints but may require restating constraints multiple times (when no appropri-

ate hierarchy exists). Operator-based methods can also be used to represent these constraints,

however they often leads to a proliferation of operator preconditions and often incur addi-

tional search. Hybrid methods o�er the greatest
exibility in representing implicit constraints

and often provide for a more eÆcient plan search.

5 Scripting vs. Declaring

Another notable di�erence between HTN and operator-based approaches is that an HTN

approach allows the encoding of speci�c (canned) action sequences while an operator-based

approach often incurs signi�cant search to construct the same sequence (since the user cannot

directly specify it). Conversely, when operators can be combined in di�erent ways but still

have interactions, an operator-based representation can be a more concise, natural method

of encoding these constraints. In varying domains, or portions of these domains, di�erent

aspects of these representation tradeo�s are relevant.

In order to demonstrate this tradeo� we performed an experiment using a knowledge

engineer (KE). For this experiment, the KE encoded a simpli�ed portion of the MVP im-

age processing domain[Chien and Mortensen 1996], which represented a subproblem called

image navigation.4 This is perhaps the most complex subproblem in this image processing

domain. It involves 8 top-level goals and 40 operators; a typical plan might range from 20-50

4The knowledge engineer had some knowledge of the image processing application and had no knowledge

of this paper or research topic.

16

Image Navigation

B. AutoNav C. Manual NavA. Setup

1. acquire initial nav info

2. construct initial overlaps

3. find previous tiepoints*

4. construct tiepoints

5. construct OM matrix

6. output residual error*

7. construct tiepoints

8. construct OM matrix

9. output residual error*

D. update SEDR*

find parameters

Figure 6: MVP Navigation Process

operators. For this subproblem, the KE developed three planning models, one in which only

operator-based techniques were used, one where only HTN techniques were used, and one

where both techniques were used.

All possible steps of the image navigation problem are shown in Figure 6. In the most

basic case the process would involve setup steps A.1 and A.2, and automatic navigation steps

B.4 and B.5. However, in some circumstances all asterisked steps would also be added. For

example, if there is an initial tiepoint �le, step A.3 might be added. If residual error feedback

was desired, step B.6 would be added. And if the user wanted to update the archival SEDR5,

step D would be added. In most situations, the navigation process consists of: A. setup, B.

automatic navigation, then C. manual navigation, where steps from manual navigation are

performed to �ne-tune the results of the automatic navigation.

To even more complicate matters, the exact speci�cation of many steps depends on if

other steps are being performed. For example, if residual error output is a requested goal,

step B.6 and step C.9 must be executed. This requires that step B.5 and step C.8 have

appropriate parameter settings to compute the residual output as part of the OM matrix

5Supplementary Experiment Data Record

17

(the planet-to-camera coordinate transformation matrix) computation.

Furthermore, we have only listed the major component steps of navigating the image.

There are also secondary steps that extract information from the image label. These sec-

ondary steps help appropriately select program parameters for each of the main steps listed

in Figure 6. These extra details account for additional operators and steps in the plan not

shown in Figure 6. In all, a complex navigation process would involve a plan of perhaps 30

operators and 50 derivation steps.

We compared the three knowledge bases constructed by the KE for this problem using

the following measures: compactness of encoding, modularity (lack of repetition), and search

eÆciency. In Table 1 we summarize the number of HTN rules, number of operators, and

search required for the most complex problems in each of the encodings.

Encoding # HTN Rules # Operators # Search Nodes

Operators 0 8 26

HTN Rules 15 0 5

Hybrid 5 8 18

Table 1: Knowledge Encoding Statistics

Based on our results, the pure operator-based representation was more ineÆcient from a

search perspective and encoding a domain in this type of representation was the most diÆcult.

While only a small subset of the combinations of operators will actually be used in solving

problems, this type of framework requires that all operators be suÆciently accurate to rule

out all other combinations. Another way to encode this information in the operator-based

framework is to add arti�cial preconditions to help direct the search of the planner. Another

less ad hoc method is to specify search control rules to direct the planner. Unfortunately,

neither of these methods elegantly and modularly represents the hierarchical scripting aspect

of this planning problem. It is diÆcult to see the few semantically meaningful sequences from

looking at the operators; and, it is diÆcult to debug the operators to ensure generation of

only valid sequences. On writing a pure operator-based representation the KE said \The

18

operator KB was the most diÆcult to encode. One small change typically a�ected many

operators and would require great re-testing. Because I had worked myself into a corner, I

had to start from scratch a few times. For the �nal time, I realized that I needed to fully

map the entire structure (including parameters) on paper."

Representing this problem in a pure HTN framework was also diÆcult. Many com-

plex combinations of dependencies and interrelations would require numerous decomposition

rules. Generally, there is one reduction rule for each basic sequence, and one rule for each

combination of add-ons to the basic sequence. For example, when using step B.5, we need

to consider the cases where step B.6 was included and the cases where it was not. Also, the

OMCOR2 program (step B.5) needs to know whether a previous tiepoint �le was used (step

A.3), etc. Unfortunately, this creates a proliferation of decompositions rules which are is

diÆcult to understand and maintain. The HTN encoding of this problem resulted in 4 rules

to cover the automatic navigation process, 2 to cover the manual navigation process, and

also a number of additional rules to address with previous tiepoint �les (Step A.3). These

rules account for the 15 rules required for the pure HTN representation.

In a combined HTN and operator-based framework it was possible to represent di�er-

ent parts of the plan generation process using operator-based and HTN methods. Basic

sequences can be easily represented using HTN rules. More complex additions to each basic

sequence can be represented through operator-based constructs such as preconditions and

conditional e�ects. Once the basic sequence has been determined through decomposition,

goal-achievement is used to add additional constraints or dependencies. The complex navi-

gation problem discussed above can now be represented as a separate script. For example,

the two basic navigation phases, automatic navigation and manual navigation, can now be

represented in an HTN framework. However, slight modi�cations from the default framework

(such as whether or not to use an initial tiepoint �le) can be linked in using operator-based

planning techniques. For example, the required link between step B.5 (OMCOR) and step

B.6 (outputting residual error) can be represented by having a conditional e�ect of the OM-

COR operator achieve a precondition of the output residual error step. The presence of

19

this conditional e�ect represents an additional speci�cation on when to use the OMCOR

operator, and thus, also represents the interaction between step B.5 and step B.6. Therefore

the basics of the two-pass navigation script are handled by the HTN planner while variations

are managed by the operator-based component.

Overall, the use of a combination of HTN and operator-based techniques results in a

reduced number of rules (i.e. compactness) and avoidance of redundancy in the KB. Avoiding

redundancy is especially important since redundant portions of the KB must all be updated

whenever one part is changed. This can lead to errors and increased maintenance costs.

Point 3: Scripting vs Declaring An HTN framework is more search eÆcient than

an operator-based one in cases where only a few sequences of operators are valid. However,

an HTN format may often require numerous rules to represent additional constraints. An

operator-based framework is representationally much cleaner, however, it requires a more

general set of operators that can correctly manage many possible execution paths. In a hybrid

framework, we can interleave the two planning processes (and representations) to produce an

eÆcient planner that supports a compact, maintainable representation.

6 Other Representational Issues

In this section, we present several other representational issues that often arise when building

a planning system for real-world applications.

6.1 Static State Information

One important issue in operator-based and HTN-based planning is the ability to eÆciently

use static state information to assist in pruning the search space. Often, decomposition

conditions or operator preconditions can be considered static if they will remain unchanged

throughout the planning process. These conditions can usually be evaluated immediately,

which will help to initially prune the search space. For example, consider the DSN decom-

position rule and the GALSOS operator (from MVP) shown in Figure 7. In the GALSOS

20

(decomprule PO_required
 lhs
 (initialgoals ((PO_required ?track_id))
 conditions ((CONFIG ?tt PO_FILE ?po_file))
 context ((c1 (ss_connect ?track_id))
 (c2 (load_ant_predicts ?track_id))))
 rhs
 (newgoals ((g1 (load_PO_files ?track_id ?po_file))
 (g2 (conf_dopp_tuner ?track_id)))))

operator GALSOS
 :parameters ?infile ?ubwc ?calc
 :preconditions
 (project ?infile galileo)
 (raw-data-values ?infile)
 :effects
 (:not (reseaus-intact ?infile))
 (:not (raw-data-values ?infile))
 (:not (missing-lines-filled-in ?infile))
 (radiometrically-corrected ?infile)
 (image-format ?infile halfword)
 (blemishes-removed ?infile)
 if (UBWC option is selected)
 then (uneven-bit-weight-corrected ?infile)
 if (CALC option is selected)
 then (entropy-values-calculated ?infile)

Figure 7: Static Conditions in Operator and Decomposition Rules

operator, the precondition (project ?in�le Galileo) is considered static, since no domain ac-

tions can add or delete the speci�ed project �le. Similarly, the DSN decomposition rule

contains the static condition (CONFIG ?tt PO FILE ?po �le). This condition is considered

static since the PO �le name will always remain constant throughout planning.

Di�erent planners are able to take advantage of this static information in varying de-

grees. For instance, when the operator-based planner Prodigy [Carbonell et al. 1992] is

considering applying a new operator, it will enumerate all possible variable bindings for any

operator arguments. Prodigy will immediately evaluate a static condition such as (isa ?x

foo) to help eliminate any inconsistent bindings. While this does help prune the search space,

Prodigy still immediately assigns constants to variables which causes it to unnecessarily

commit to bindings for other variables in the operator.

Most partial-order planners, such as UCPOP [Penberthy and Weld 1992], will add all

preconditions to an unachieved goal list. Unfortunately, if the preconditions are not attacked

in the correct order (e.g. static conditions �rst), much unnecessary search may occur. Also,

even if the static preconditions are immediately attacked, but no bindings can satisfy them,

the current (unusable) plan will still be added to the queue and removed (with no new plans

generated).

In our integrated planning framework, decomposition rules can use static preconditions to

21

decrease the set of possible variable bindings generated when a rule is applied. Static precon-

ditions are labeled as such and only variable bindings that satisfy them are generated when

considering applicable decomposition rules. Thus, codesignation to satisfy static conditions

can be committed to early, but unnecessary commitments for other subgoals and variables

are avoided. These static conditions are related to �lter conditions [Pryor and Collins 1992]

since they restrict the applicability of the certain operators. However, precisely because

static conditions cannot be changed by operators, they can be easily evaluated and used in

determining the applicability of a decomposition rule or operator.

Point 4: Static Conditions Both operator-based planners and HTN planners can com-

mit on codesignations to evaluate static conditions to increase search eÆciency. Hybrid

planners can use static information correspondingly.

6.2 Nominal Planning, Replanning

It may be important in an application to predict (and control) the plans that are generated

for nominal or near-nominal conditions. For example, when the problem goals or initial

state change slightly, it is often desirable for the output plan to also change only slightly.6

In operator-based planners, it is often diÆcult to encode such preferences. The planner

would typically only be required to generate a correct plan. In contrast, since HTN planning

techniques are closer to scripting, HTN planners o�er good control over nominal or near-

nominal plan generation. Hybrid HTN/operator planning frameworks can thus also o�er

control over nominal plan generation.

A key requirement of many real-world planning systems is the ability to replan when

plan goals or other conditions change. Replanning generally requires basic knowledge of

why certain goals and actions are present in the plan and present in action preconditions

and e�ects. This requires a basic level of operator-based information and is thus mostly

supported through operator-based techniques, such as precondition and e�ect analysis. HTN

approaches often encourage the omission of this information from the domain knowledge since

6This is a strong user requirement in both the image processing and DSN antenna operations applications.

22

it is not required for normal planning. Hybrid techniques must still require this precondition

and e�ect information in order to e�ectively replan. Therefore, if replanning is necessary,

much of the ease of encoding in an HTN approach is lost because a signi�cant operator

representation is required.

Point 5: Nominal Planning, Replanning HTN and hybrid approaches also of-

fer greater control over nominal plan generation. However, replanning generally requires

operator-based information (preconditions and e�ects).

6.3 Goal Regression

In operator-based planning, relevant goal modi�ers are listed as arguments to the goal pred-

icate. These modi�ers then get propagated from goal to subgoal through operators. Thus,

any parameters that are possibly relevant to a goal (and any of its subgoals) must be present

as goal arguments. 7 This procedure can result in long argument lists (often tens of param-

eters), thereby increasing the diÆculty of knowledge maintenance.

In HTN planning, relevant modi�ers are typically propagated top-down from more ab-

stract goals which expand into more speci�c activities. While this process still requires all

possibly relevant parameters to be present, the expansions tend to result in short wide struc-

tures (e.g. an HTN rule expands a single goal into many goals). Thus, argument lengths

quickly get shorter at lower levels of abstraction.

A hybrid approach requires goal arguments to support both HTN and operator based

planning and hence o�ers no advantage over either.

Point 6: Goal Regression Operator-based approaches require all relevant goal modi�ers

be present as goal arguments which results in long argument lists. HTN approaches o�er a

cleaner representation of complex goal arguments where argument lengths get shorter as goals

become more detailed. A hybrid approach is required to support both of these formats.

7Even those parameters relevant for only a few methods of achieving a goal must also be present.

23

7 Conclusion

This paper has described a number of issues relevant in representing planning knowledge in

operator-based and HTN-based planning paradigms, including: (1) modular and hierarchi-

cal representation of planning knowledge; (2) declaring versus scripting; (3) encoding control

information and implicit knowledge; and (4) additional issues involving utilizing static con-

ditions, nominal planning, and replanning, goal regression. In light of these issues, we have

described the main tradeo�s of using an HTN, operator-based, or integrated speci�cation

to represent domain knowledge. In particular, we discuss how these di�erent methodolo-

gies impacts the naturalness of the representation using the evaluation criteria of generality,

hierarchy,
exibility, and eÆciency.

HTN and hybrid approaches are strong at modular and hierarchical representation, how-

ever operator-based approaches usually provide a more compact representation of constraints.

Hybrid representations are best at managing the tradeo� between generality and eÆciency.

Hybrid approaches are also most
exible at encoding implicit constraints. All three ap-

proaches can incorporate knowledge of static conditions to improve eÆciency. HTN/hybrid

approaches o�er the most control over nominal plan generation, but operator-based tech-

niques o�er the most support for replanning. HTN approaches most cleanly represent goal

argument regressions. Based on these criteria we conclude that neither the operator-based

approach nor the HTN approach dominates the other. Rather, in some cases the operator-

based representation is more appropriate and in other cases the HTN representation is more

appropriate. Thus, it seems most prudent to advocate usage of hybrid HTN/operator tech-

niques.

Acknowledgments

The research described in this paper was performed at the Jet Propulsion Laboratory, Cal-

ifornia Institute of Technology, under a contract with the National Aeronautics and Space

Administration. Reference herein to any speci�c commercial product, process, or service

24

by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its en-

dorsement by the United States Government or the Jet Propulsion Laboratory, California

Institute of Technology.

References

[Carbonell et al. 1992] Carbonell, J.G.; Blythe, J.; Etzioni, O.; Gil, Y.; Joseph, R.; Kahn,

D.; Knoblock, C.; Minton, S.; P�erez, M. A.; Reilly, S.; Veloso, M.; and Wang, X. 1992.

prodigy 4.0: The Manual and Tutorial. Technical report, School of Computer Science,

Carnegie Mellon University.

[Chapman 1987] D. Chapman, \Planning for Conjunctive Goals", 1987, Arti�cial Intelli-

gence 32, 3, pp.333-377.

[Chien 1994] S.Chien,"Automated Synthesis of Image Processing Procedures for a Large-

scale Image Database," Proceedings of the First IEEE International Conference on

Image Processing, Austin, TX, November 1994, Vol. 3, pp. 796-800.

[Chien and Mortensen 1996] S. A. Chien and H. B. Mortensen, "Automating Image Pro-

cessing for Scienti�c Data Analysis of a Large Image Database," IEEE Transactions on

Pattern Analysis and Machine Intelligence 18 (8): pp. 854-859, August 1996.

[Chien et al. 1995] S. A. Chien, R. W. Hill Jr., X. Wang, T. Estlin, K. V. Fayyad, and H.

B. Mortensen, \Why Real-world Planning is DiÆcult: A Tale of Two Applications,"

Proceedings of the Third European Workshop on Planning, Assisi, Italy, September

1995.

[Chien et al. 1997] Chien, S., Govindjee, A., Estlin, T., Wang, X., Hill Jr., R., "Using Arti-

�cial Intelligence Planning Techniques to Automate Generation of Tracking Plans for a

Network of Communications Antennas," Proceedings of the 1997 Conference on Inno-

vative Application of Arti�cial Intelligence, Providence, RI, July 1997, pp.963-970.

25

[Erol et al. 1994] K. Erol, J. Hendler, and D. Nau, \UMCP: A Sound and Complete Proce-

dure for Hierarchical Task Network Planning," Proceedings of the Second International

Conference on AI Planning Systems, Chicago, IL, June 1994, pp. 249-254.

[Firby 1996] J. Firby, \Modularity Issues in Reactive Planning," Proceedings of the Third

International Conference on AI Planning Systems, Edinburgh, UK, May 1996, pp. 78-85.

[IEEE Expert 1996] AI Planning Systems in the Real World, IEEE Expert, December 1996,

pp. 4-12.

[Kambhampati 1995] Kambhampati, S., A Comparative Analysis of partial order planning

and task reduction planning, SIGART Bulletin, Special Issue on Evaluating Plans,

Planners, and Planning, Vol 6, No. 1, January 1995, pp.16-25.

[Minton et al. 1991] Minton S., J. Bresina, and M. Drummond, \Commitment Strategies

in Planning: A Comparative Analysis," Proceedingsof the Twelfth International Joint

Conference on Arti�cial Intelligence, Sydney, Australia, pp.259-267.

[Penberthy and Weld 1992] J. S. Penberthy and D. S. Weld, \UCPOP: A Sound Complete,

Partial Order Planner for ADL," Proceedings of the Third International Conference on

Knowledge Representation and Reasoning, Cambridge, MA October 1991, pp. 103-114.

[Pryor and Collins 1992] G. Collins and L. Pryor, \Achieving the functionality of �lter con-

ditions in a partial order planner," Proceedings of the Tenth National Conference on

Arti�cial Intelligence, San Jose, CA, July 1992, pp. 375-380.

[Tate et al. 1994] Tate, A., B. Drabble, and R. Kirby, \O-Plan2: An Open Architecture

for Command Planning and Control," in Intelligent Scheduling (Eds. M. Fox and M.

Zweben), Morgan Kaufmann, 1994, pp. 213-239.

[Wilkins 1988] D. Wilkins. Practical Planning: Extending the Classical AI Planning

Paradigm. Morgan Kaufmann, 1988.

26

